The distribution and mobilisation of arachidonic acid in fat cell ghosts and its modification by glucocorticoids

G.P. LEWIS, PRISCILLA, J. PIPER & CARMEN VIGO

Department of Pharmacology, Institute of Basic Medical Sciences, Royal College of Surgeons of England, Lincoln's Inn Fields, London, WC2A 3PN

Rabbit isolated fat cells have previously been shown to synthesize and release prostaglandins. During lipolysis glucocorticoids increased the tissue/medium ratio of prostaglandins (Chang, Lewis & Piper, 1977). In the present study fat cell ghosts were used as a simpler system in which to investigate the mechanism and site of action of steroids. The ghosts were prepared from isolated fat cells by lysis in hypotonic medium and resealing in hypertonic Krebs solution (Rodbell, 1967). Prostaglandins were extracted and separated by t.l.c. using ethyl acetate:acetic acid:isooctane:water (100:20:50:100). Stimulation with ACTH₁₋₂₄ released [14C]-prostaglandins from ghosts which had been incubated with [14C]-arachidonic acid (AA) (52 µCi/ umol), showing that prostaglandin synthesizing enzymes are present in ghosts. The percentage conversion of AA to prostaglandins E_2 and $F_{2\alpha}$ was 0.82 \pm 0.44, 1.37 \pm 0.6 (n = 4) respectively. Synthesis of prostaglandins from endogenous AA was estimated by radioimmunoassay and found to be prostaglandin $F_{2\omega}$ 10.3 \pm 4.4, prostaglandin E_2 , 9.8 \pm 4.4 ng/mg lipid.

To identify the AA pool within the ghosts, a whole lipid extraction was carried out (Bligh & Dyer, 1959) and neutral and phospholipid fractions separated by silicic acid chromatography (Hirsch & Ahrens, 1958). The fractions were then separated into their subclasses by t.l.c. in chloroform: methanol: water (65:25:4) for phospholipids and in petroleum ether (40–60°):diethyl ether:acetic acid (80:20:1) for neutral lipids (Lepage, 1967) and their fatty acid content analysed by gas liquid chromatography. The ratio of phospholipid to neutral lipid was approximately 2:1, 89.9% of the AA being present in phospholipids, 8.5% in neutral lipids and 1.6% unbound. However, when ghosts are incubated with [14C]-AA, uptake occurred non-

specifically: 20% in phospholipid, 10% in neutral lipids and 70% remained free.

Since AA must be released before being converted to prostaglandins, the effects of a number of compounds known to stimulate lipase activity were investigated. ACTH₁₋₂₄ (1 µg/ml), dibutyryl cAMP (0.35 mg/ml), bradykinin (4 µg/ml) and theophylline (18 ng/ml) were all found to induce the release of arachidonic acid.

Ghosts were incubated with [14 C]-AA and, in some experiments, hydrocortisone (50 µg/ml) or dexamethasone (10 µg/ml) were added to the incubation medium. In the presence of steroid, the incorporation of AA into the neutral lipids was enhanced while that into the phospholipids was reduced. When the release of bound [14 C]-AA was stimulated with ACTH₁₋₂₄ in the presence of steroids, release from the phospholipids was inhibited while that from the neutral lipids was stimulated. The same effect was found on release of endogenous arachidonic acid.

Thus, glucocorticoids appear to have two actions in fat cell ghosts: inhibition of mobilisation of AA from phospholipids while stimulating its release from triglycerides. The activities of phospholipases and fatty acyl transferases are influenced by membrane charge density and surface pressure and interaction of glucocorticoids with the membrane may inhibit these enzymes. Chang, Lewis & Piper (1977) have shown that steroids do not inhibit synthesis of prostaglandins in fat cells, which suggests that when they are stimulated with ACTH, triglycerides are the major source of AA for prostaglandin synthesis.

We wish to thank the Medical Research Council for grants.

References

BLIGH, E.G. & DYER, W.J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911-917.

CHANG, J., LEWIS, G.P. & PIPER, P.J. (1977). Inhibition by glucocorticoids of prostaglandin release from adipose tissue *in vitro*. *Br. J. Pharmac.*, **59**, 425–432.

HIRSCH, J. & AHRENS, E. (1958). The separation of complex mixtures by the use of silicic acid chromatography. J. biol. Chem., 233, 311-320.

LEPAGE, M. (1967). Identification and composition of turnip root lipids. *Lipids*, **2**, 244–250.

RODBELL, M. (1967). Preparation of 'ghosts' and their' properties, adenyl cyclase and other enzymes. J. biol. Chem., 242, 5746-5750.

Alterations in prostaglandin E₁-induced blood flow changes in granulation tissue

LAURIE D. DE LEVE, M.J. PARNHAM & P.R. SAXENA

Department of Pharmacology, Medical Faculty, Erasmus University, P.O. Box 1738, Rotterdam, The Netherlands

As granulation tissue develops, the increased vascular

permeability response to local prostaglandin (PG)E becomes more pronounced (Chang & Tsurufuji, 1976) and the response to other inflammatory mediators also changes (Chang & Tsurufuji, 1976; Hurley, Edwards & Ham, 1970). We have, thus, studied PGE₁-induced changes in blood flow at different stages of granuloma development.

Carrageenin-soaked polyether sponges, with indwelling cannulae, were implanted (s.c., 2 sponges/rat) into male Wistar rats (170-250 g) as described previously (Bonta, Adolfs & Parnham, 1978). Subsequently, (see Table 1) the left ventricle was catheterized via the carotid artery, under urethane anaesthesia. Intra-ventricular injections of radioactively-labelled plastic microspheres (15 ± 5 (s.d.) μm dia, 20,000-150,000 microspheres/0.1 ml saline) were given 15 min before and 1.5 min and 15 min after injections of 0.5 ml PGE, (200 ng/ml) into one sponge and 0.5 ml saline into the other. Each microsphere injection involved a different isotope. Animals were killed with sodium pentobarbitone 15 min later and dissected into various organs and tissues which were counted in a Packard y-scintillation counter (Johnston & Saxena, 1978). Blood flow was expressed as percent distribution of cardiac output (C.O.)/100 g tissue (see Table 1).

PGE₁ increased blood flow to granulomata, most markedly 15 min after injection. This effect became more pronounced on later days (Table 1a). The response to PGE₁ on day 5 was somewhat greater than that shown in Table 1a, since absolute flow in saline-treated granulomata also increased slightly (from a baseline of $8.9 \pm 0.9\%$ C.O./100 g (\pm s.e. mean) to $12.5 \pm 1.9\%$ C.O./100 g after 15 min, P > 0.05), probably due to diffusion of PGE₁ from the other

sponge. On day 10, PGE₁ also caused a detectable increase in flow to the skin covering the granulomata (Table 1b), but not to other organs.

This work was carried out during the tenure of a Medical Student Research Assistantship (L.D.D.L.). M.J.P is supported by a grant from the Nederlandse Vereniging tot Rheumatiekbestrijding to Prof. I.L. Bonta.

References

BONTA, I.L., ADOLFS, M.J.P. & PARNHAM, M.J. (1978). Cannulated sponge implants in rats for the study of time-dependent pharmacological influences on inflammatory granulomata. *J. Pharmac. Meths.*, in press.

CHANG, W.-C. & TSURUFUJI, S. (1976). Differences in the mode of exudative reaction between early phase and late phase of carrageenin-induced inflammation in rats. *Eur. J. Pharmac.*, **36**, 7-14.

HURLEY, J.V., EDWARDS, B. & HAM, K.N. (1970). The response of newly formed blood vessels in healing wounds to histamine and other permeability factors. *Pathology*, 2, 133–145.

JOHNSTON, B.M. & SAXENA, P.R. (1978). The effect of ergotamine on tissue blood flow and the arteriovenous shunting of radioactive microspheres in the head. Br. J. Pharmac., 63, 541-549.

	Time after PGE ₁ injection (min)	Change in percent distribution of C.O./100 g tissue		
		day 5 § (n = 4)	day 7 (n = 7)	day 10 (n = 5)
a Granulomata	-15.0 1.5 15.0	-0.84 ± 2.26 -0.90 ± 1.62 4.47 ± 1.84	-0.40 ± 1.30 3.89 ± 1.52* 8.03 ± 2.11**	-0.16 ± 0.78 7.00 ± 1.21** 15.58 ± 4.07**
b Skin covering granulomata	-15.0 1.5 15.0	-0.04 ± 1.80 0.23 ± 0.97 0.40 ± 1.84	-0.01 ± 0.82 1.38 ± 1.12 0.15 ± 0.92	-0.16 ± 0.72 5.71 ± 5.55 2.98 ± 1.07*

Values shown are means \pm s.e. mean calculated by subtraction of values (percent distribution of C.O./100 g tissue) for saline-treated tissues from those for PGE₁-treated tissues in the same animal. In each case percent distribution of C.O./100 g tissue was determined as: radioactivity in tissue \div radioactivity in whole body \times 100 \div 100 g tissue.

§Time after sponge implantation (day 1) on which surgical procedures and drug treatment were carried out. Significance of differences from baseline (Mann-Whitney U test, one-tailed): *P<0.05; **P<0.01.